skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Hongyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Improving the fireproof performance of polymers is crucial for ensuring human safety and enabling future space colonization. However, the complexity of the mechanisms for flame retardant and the need for customized material design pose significant challenges. To address these issues, we propose a machine learning (ML) framework based on substructure fingerprinting and self-enforcing deep neural networks (SDNN) to predict the fireproof performance of flame-retardant epoxy resins. Our model is based on a comprehensive understanding of the physical mechanisms of materials and can predict fireproof performance and eliminate the needs for properties descriptors, making it more convenient than previous ML models. With a dataset of only 163 samples, our SDNN models show an average prediction error of 3% for the limited oxygen index (LOI). They also provide satisfactory predictions for the peak of heat release rate PHR and total heat release (THR), with coefficient of determination (R2) values of 0.87 and 0.85, respectively, and average prediction errors less than 17%. Our model outperforms the support vector model SVM for all three indices, making it a state-of-the-art study in the field of flame retardancy. We believe that our framework will be a valuable tool for the design and virtual screening of flame retardants and will contribute to the development of safer and more efficient polymer materials. 
    more » « less